Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

The iron phosphate $\mathrm{CaFe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$

Mourad Hidouri* and Mongi Ben Amara

Faculté des Sciences de Monastir, 5019, Monastir, Tunisia.
Correspondence e-mail: mourad_hidouri@yahoo.fr

Received 6 May 2009; accepted 17 July 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.003 \AA$; R factor $=0.031 ; w R$ factor $=0.088 ;$ data-to-parameter ratio $=13.2$.

Monoclinic, $P 2_{1} / m$
$a=7.521$ (2) \AA
$b=6.330(2) \AA$
$c=10.160(2) \AA$
$\beta=100.03(2)^{\circ}$
$V=476.3(2) \AA^{3}$

Data collection

Enraf-Nonius TurboCAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.193, T_{\text {max }}=0.293$
2072 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.088$
$S=1.12$
1493 reflections

$Z=2$

Mo $K \alpha$ radiation
$\mu=5.63 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.36 \times 0.22 \times 0.22 \mathrm{~mm}$

1493 independent reflections
1412 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
2 standard reflections
frequency: 120 min
intensity decay: 6.0%

113 parameters
$\Delta \rho_{\text {max }}=0.63 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.59 \mathrm{e}^{-3}$

A new iron phosphate, calcium triiron(III) tris(phosphate) oxide, $\mathrm{CaFe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$, has been isolated and shown to exhibit a three-dimensional structure built by FeO_{6} octahedra, FeO_{5} trigonal bipyramids and PO_{4} tetrahedra. The $\mathrm{FeO}_{x}(x=5,6)$ polyhedra are linked through common corners and edges, forming $\left[\mathrm{Fe}_{6} \mathrm{O}_{28}\right]_{\infty}$ chains with branches running along [010]. Adjacent chains are connected by the phosphate groups via common corners and edges, giving rise to a three-dimensional framework analogous to those of the previously reported $\mathrm{SrFe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$ and $\mathrm{Bi}_{0.4} \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$ structures, in which the Ca^{2+} cations occupy a single symmetry non-equivalent cavity.

Related literature

The interest in iron phosphates has increased following the discovery of LiFePO_{4} with olivine-type structure, which is the most promising electrode material for Li-ion batteries, see: Padhi et al. (1997). The title compound is isostructural to the iron phosphates $\mathrm{Bi}_{0.4} \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{3}$ (Benabad et al., 2000) and $\mathrm{SrFe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$ (Morozov et al., 2003). For ionic radii, see: Shannon (1976). For P-O distances in orthophosphate groups, see: Baur (1974). For $\mathrm{Ca}-\mathrm{O}$ distances in heptacoordinated Ca^{2+} ions in $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, see: Mathew et al. (1977). For $\mathrm{Fe}-\mathrm{O}$ distances for five-coordinated Fe^{3+} ions in $\mathrm{NaCaFe}_{3}\left(\mathrm{PO}_{4}\right)_{4}$, see: Hidouri et al. (2003).The valences of the cations were calculated using the Brown \& Altermatt (1985) method.

Experimental

Crystal data

$\mathrm{CaFe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$

$$
M_{r}=508.54
$$

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2067).

References

Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.
Benabad, A., Bakhous, K., Cherkaoui, F. \& Holt, E. M. (2000). Acta Cryst. C56, 1292-1293.
Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hidouri, M., Lajmi, B., Wattiaux, A., Fournes, L., Darriet, J. \& Amara, M. B. (2003). J. Alloys Compd, 358, 36-41.

Mathew, M., Schroeder, L. W., Dickens, B. \& Brown, W. E. (1977). Acta Cryst. B33, 1325-1333.
Morozov, V. A., Pokholok, K. V., Lazoryak, B. I., Malakho, A. P., Lachgar, A., Lebedev, O. I. \& Tendeloo, G. V. (2003). J Solid State Chem. 170, 411-417.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Padhi, A., Nanjundaswamy, K. \& Goodenough, J. (1997). J. Electrochem. Soc. 144, 1188-1194.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, i66 [doi:10.1107/S160053680902827X]

The iron phosphate $\mathrm{CaFe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$

M. Hidouri and M. Ben Amara

Comment

Iron phosphates are extensively studied for their rich structural chemistry owing to the possible occurrence of both +2 and +3 oxidation states for iron and the tendecy of its coordination polyhedra to form with the phosphate groups a variety of frameworks. Such adaptative crystal chemistry provides new and exciting aventures in the exploration of the intrinsic relationship between structure and composition. The interest in these materials is further accentuated since the discovery of LiFePO_{4} with olivine-type structure the most promising electrode material for Li-ion batteries (Padhi et al., 1997).

As a part of a systematic exploration of the $\mathrm{A}_{2} \mathrm{O}-\mathrm{MO}-\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~A}=$ alkali metal, $M=$ divalent cation $)$ in a search of new iron phosphates with interesting structures and subsequently intriguing properties, we describe here the structure of $\mathrm{CaFe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$, extracted from a mixture of nominal composition $\mathrm{LiCaFe}_{3}\left(\mathrm{PO}_{4}\right)_{4}$. This compound is isostructural to the previously reported iron phosphates $\mathrm{Bi}_{0.4} \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{3}$ (Benabad et al., 2000) and $\mathrm{SrFe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$ (Morozov et al., 2003). Its structure, shown in figure 1 , is built from a three-dimensional arrangement based on two crystallographically distinct FeO_{6} octahedra, one symmetry non equivalent FeO_{5} polyhedron and three symmetry distinct PO_{4} tetrahedra. The Fe polyhedra form $\left[\mathrm{Fe}_{6} \mathrm{O}_{28}\right]_{\infty}$ chains with branches running along the [010] direction. In such chains (Fig. 2), each $\mathrm{Fe}(1) \mathrm{O}_{6}$ octahedron shares two opposite edges with two equivalent octahedra, one of the equatorial oxo-ligands forming each of the common edges being also shared with one $\mathrm{Fe}(2) \mathrm{O}_{6}$ octahedron. The latter is corner-linked with one one $\mathrm{Fe}(2) \mathrm{O}_{5}$ polyhedron to form the branches of the chain. The conntection of these chains is ensured by the phosphate tetrahedra in such a way that each PO_{4} connects two adjacent chains either by sharing one edge with one chain and one corner with the other $\left(\mathrm{P}(1) \mathrm{O}_{4}\right)$ or by sharing three corners with a same chain and the fourth with the other $\left(\mathrm{P}(2) \mathrm{O}_{4}\right.$ and $\left.\mathrm{P}(3) \mathrm{O}_{4}\right)$. The three-dimensional framework constructed in this way delimits a single symmetry non equivalent cavity occupied by the Ca^{2+} cations.

The FeO_{6} octahedra are both highly distorted as indicated by the $\mathrm{Fe}-\mathrm{O}$ distances ranging from 1.986 (2) to 2.114 (2) \AA for $\mathrm{Fe}(1) \mathrm{O}_{6}$ and from 1.870 (2) to 2.183 (3) \AA for $\mathrm{Fe}(2) \mathrm{O}_{6}$ with average values of 2.037 (2) \AA and 2.019 (3) \AA, respectively, close to that $2.03 \AA$, predicted by Shannon for octahedral Fe^{3+} ions (Shannon, 1976). The FeO_{5} polyhedron is also very distorted with $\mathrm{Fe}-\mathrm{O}$ distances ranging from 1.872 (4) to 1.986 (2) \AA. The mean distance of 1.940 (4) \AA is consistent with those $1.946 \AA$ and $1.956 \AA$, observed for five-coordinated Fe^{3+} ions in $\mathrm{NaCaFe}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ (Hidouri et al., 2003). The PO_{4} tetrahedra have $\mathrm{P}-\mathrm{O}$ distances in the range 1.513 (3)-1.561 (3) \AA with an overall distance of 1.535 (3) \AA, close to that 1.537 calculated for the monophosphate groups (Baur, 1974). The Ca^{2+} cations occupy a single non equivalent site delimited by the $\mathrm{Fe} / \mathrm{P} / \mathrm{O}$ network. Its environement (Fig.3) is consisted by seven oxygen atoms with four $\mathrm{Ca}-\mathrm{O}$ distances included between 2.391 (3) and 2.514 (2) \AA showing the CaO_{7} polyhedron to be highly distorted. The mean $\mathrm{Ca}-\mathrm{O}$ distance of 2.462 (2) \AA is in the range of those previously reported for heptacoordinated Ca^{2+} ions in $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (Mathew et al., 1977). The valences of all the cations were calculated using the Brown \& Altermatt method (Brown \& Altermatt, 1985). The calculated values of $1.85,2.86,3.10,3.09,4.94,5.03$ and 5.02 for $\mathrm{Ca}, \mathrm{Fe}(1), \mathrm{Fe}(2), \mathrm{Fe}(3), \mathrm{P}(1), \mathrm{P}(2)$ and $\mathrm{P}(3)$, respectively are consistent with their respective oxidation numbers of $2.0,3.0,3.0,3.0,5.0,5.0$ and 5.0.

supplementary materials

The structural similarity between the title compound and the iron phosphates $\mathrm{SrFe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$ and $\mathrm{Bi}_{0.4} \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$ shows the great flexibility of the $\left[\mathrm{Fe}_{3} \mathrm{P}_{3} \mathrm{O}_{13}\right]_{\infty}$ framework which seems to accomodate various cations. Further invstigation of the chemical stablity of this structural type by including other cations would be of interest.

Experimental

Single crystals of the title compound were isolated during an attempt to crystallize $\mathrm{LiCaFe}_{3}\left(\mathrm{PO}_{4}\right)_{4}$ in a flux of lithium dimolybdate $\mathrm{Li}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ in an atomic ratio, $\mathrm{P}: \mathrm{Mo}=8: 1$. Appropriate amounts of $\mathrm{LiNO}_{3}, \mathrm{CaCO}_{3}, \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} .9 \mathrm{H}_{2} \mathrm{O},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ and MoO_{3} were firstly dissolved in nitric acid and the solution obtained was dried for 24 h at 353 K . After grinding in an agate mortar to ensure its best homogeneity, the dry residue was heated in a platinum crucible to 673 K for 24 h in order to remove the decomposition products: $\mathrm{NO}_{2}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$. The sample was then reground, melted at 1173 K for 1 h and subsequently cooled at a $10^{\circ} . \mathrm{h}^{-1}$ rate to 673 K after which the furnace was turned off. The final product was washed with warm water in order to dissolve the flux. From the mixture, dark brown and irregularely shaped crystals of $\mathrm{CaFe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$ were extracted.

Refinement

The Fe and Ca atoms were loctaed by direct methods and the remaining atoms were found by successive difference Fourier maps. All atomic positions were refined with anisotrop displacement parameterers.

Figures

Fig. 1. : The $\mathrm{CaFe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$ structure as projected along the [010] direction.

Fig. 2. : A view of the $\left[\mathrm{Fe}_{6} \mathrm{O}_{28}\right]_{\infty}$ chain running along the [010] direction.

calcium triiron(III) tris(phosphate) oxide

Crystal data

$\mathrm{CaFe}_{3}\left(\mathrm{PO}_{4}\right)_{3} \mathrm{O}$
$M_{r}=508.54$
Monoclinic, $P 2{ }_{1} / m$
Hall symbol: -P 2 yb
$a=7.521$ (2) \AA
$b=6.330(2) \AA$
$c=10.160(2) \AA$
$\beta=100.03(2)^{\circ}$
$V=476.3(2) \AA^{3}$
$Z=2$
$F_{000}=494$
$D_{\mathrm{x}}=3.546 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=8.9-12.5^{\circ}$
$\mu=5.63 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, brown
$0.36 \times 0.22 \times 0.22 \mathrm{~mm}$

Data collection

Enraf-Nonius TurboCAD-4 diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293 \mathrm{~K}$
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.193, T_{\text {max }}=0.293$
2072 measured reflections
1493 independent reflections
1412 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.088$
$S=1.12$
1493 reflections
113 parameters
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=29.9^{\circ}$
$\theta_{\text {min }}=2.0^{\circ}$
$h=-1 \rightarrow 10$
$k=-1 \rightarrow 8$
$l=-14 \rightarrow 14$
2 standard reflections
every 120 min
intensity decay: 6.0\%

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0585 P)^{2}+0.6592 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.63 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.59$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.173 (7) methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Ca	$0.66161(10)$	-0.2500	$0.19595(7)$	$0.00891(18)$
Fe1	0.0000	-0.5000	0.0000	$0.00627(16)$
Fe2	$-0.64926(7)$	-0.7500	$0.20179(5)$	$0.00561(16)$
Fe3	$-0.21388(7)$	-0.7500	$0.43643(5)$	$0.00684(16)$
P1	$-0.31703(11)$	-0.7500	$0.11247(8)$	$0.0052(2)$
O11	$-0.5087(3)$	-0.7500	$0.0310(2)$	$0.0081(5)$
O12	$-0.3598(3)$	-0.7500	$0.2566(3)$	$0.0080(5)$
O13	$-0.2107(2)$	$-0.5489(3)$	$0.09386(18)$	$0.0083(3)$
P2	$0.26341(12)$	-0.2500	$0.23940(9)$	$0.0054(2)$
O21	$0.0855(3)$	-0.2500	$0.1340(3)$	$0.0084(5)$
O22	$0.2123(4)$	-0.2500	$0.3770(3)$	$0.0130(5)$
O23	$0.3790(2)$	$-0.4390(3)$	$0.21363(18)$	$0.0091(3)$
P3	$0.21762(12)$	-0.7500	$0.48890(9)$	$0.0064(2)$
O31	$0.0256(4)$	-0.7500	$0.4084(3)$	$0.0140(5)$
O32	$0.3513(4)$	-0.7500	$0.3933(3)$	$0.0119(5)$
O33	$-0.2479(3)$	$-1.0599(3)$	$0.41460(18)$	$0.0116(4)$
O	$-0.8765(3)$	-0.7500	$0.0924(2)$	$0.0070(5)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ca	$0.0108(3)$	$0.0090(3)$	$0.0072(3)$	0.000	$0.0024(2)$	0.000
Fe 1	$0.0075(2)$	$0.0054(2)$	$0.0068(3)$	$-0.00023(16)$	$0.00379(17)$	$0.00011(17)$
Fe 2	$0.0066(3)$	$0.0050(3)$	$0.0057(2)$	0.000	$0.00243(17)$	0.000
Fe 3	$0.0111(3)$	$0.0060(3)$	$0.0036(3)$	0.000	$0.00167(18)$	0.000
P 1	$0.0065(4)$	$0.0052(4)$	$0.0045(4)$	0.000	$0.0028(3)$	0.000
O 11	$0.0075(11)$	$0.0106(12)$	$0.0066(11)$	0.000	$0.0019(9)$	0.000
O12	$0.0096(11)$	$0.0097(12)$	$0.0058(10)$	0.000	$0.0042(8)$	0.000
O13	$0.0089(7)$	$0.0075(8)$	$0.0096(8)$	$-0.0013(6)$	$0.0048(6)$	$0.0000(6)$
P2	$0.0077(4)$	$0.0049(4)$	$0.0038(4)$	0.000	$0.0019(3)$	0.000
O21	$0.0099(11)$	$0.0089(11)$	$0.0065(10)$	0.000	$0.0011(9)$	0.000
O22	$0.0189(13)$	$0.0164(13)$	$0.0047(11)$	0.000	$0.0050(9)$	0.000

sup-4

supplementary materials

O23	$0.0106(8)$	$0.0055(7)$	$0.0114(8)$	$0.0007(6)$	$0.0028(6)$	$-0.0005(6)$
P3	$0.0103(4)$	$0.0053(4)$	$0.0044(4)$	0.000	$0.0032(3)$	0.000
O31	$0.0114(12)$	$0.0208(14)$	$0.0093(12)$	0.000	$0.0005(9)$	0.000
O32	$0.0135(12)$	$0.0167(13)$	$0.0070(11)$	0.000	$0.0057(9)$	0.000
O33	$0.0213(9)$	$0.0059(7)$	$0.0078(8)$	$-0.0006(7)$	$0.0031(7)$	$0.0016(6)$
O	$0.0065(10)$	$0.0070(11)$	$0.0068(10)$	0.000	$-0.0005(8)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Ca}-\mathrm{O} 11^{\text {i }}$	2.391 (3)
$\mathrm{Ca}-\mathrm{O} 13{ }^{\text {ii }}$	2.434 (2)
$\mathrm{Ca}-\mathrm{O} 13{ }^{\text {iii }}$	2.434 (2)
$\mathrm{Ca}-\mathrm{O} 23$	2.473 (3)
$\mathrm{Ca}-\mathrm{O} 23{ }^{\text {iv }}$	2.473 (3)
$\mathrm{Ca}-\mathrm{O}_{3}{ }^{\text {v }}$	2.514 (2)
$\mathrm{Ca}-\mathrm{O} 33^{\text {vi }}$	2.514 (2)
$\mathrm{Ca}-\mathrm{P} 2$	3.102 (4)
$\mathrm{Ca}-\mathrm{P} 3{ }^{\text {vii }}$	3.1724 (16)
$\mathrm{Ca}-\mathrm{P} 1^{\text {ii }}$	3.2878 (10)
$\mathrm{Ca}-\mathrm{P} 1^{\text {v }}$	3.2878 (10)
Fel-O ${ }^{\text {viii }}$	1.9860 (17)
Fel-O ${ }^{\text {ii }}$	1.9860 (17)
Fe1-O13	2.011 (2)
Fel-O13 ${ }^{\text {i }}$	2.011 (2)
Fel-O21 ${ }^{\text {i }}$	2.1135 (18)
Fe1-O21	2.1135 (18)
Fe2-O	1.870 (3)
Fe2-O32 ${ }^{\text {ix }}$	1.945 (3)
$\mathrm{Fe} 2-\mathrm{O} 23{ }^{\text {ix }}$	1.981 (2)
$\mathrm{Fe} 2-\mathrm{O} 23{ }^{\text {x }}$	1.981 (2)
Fe2-O12	2.151 (4)
Fe2-O11	2.183 (3)
Fe2-P1	2.803 (3)
Fe3-O31	1.872 (4)
$\mathrm{Fe} 3-\mathrm{O} 22^{\mathrm{xi}}$	1.894 (3)
Fe3-O12	1.960 (3)
$\mathrm{O} 11{ }^{\text {i }}-\mathrm{Ca}-\mathrm{O} 13^{\text {ii }}$	75.42 (7)
$\mathrm{O} 11{ }^{\text {i }}-\mathrm{Ca}-\mathrm{O} 13{ }^{\text {iii }}$	75.42 (7)
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Ca}-\mathrm{O} 13^{\text {iii }}$	102.03 (10)
$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Ca}-\mathrm{O} 23$	78.17 (9)
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Ca}-\mathrm{O} 23$	93.59 (8)
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Ca}-\mathrm{O} 23$	144.58 (7)

Fe3-O33	1.986 (2)
Fe3-O33 ${ }^{\text {xii }}$	1.986 (2)
P1-O13	1.532 (2)
P1-O13 ${ }^{\text {xii }}$	1.532 (2)
P1-O11	1.532 (3)
P1-O12	1.554 (3)
P1-Ca ${ }^{\text {ix }}$	3.2878 (10)
$\mathrm{P} 1-\mathrm{Ca}^{\text {xiii }}$	3.2878 (10)
O11-Ca ${ }^{\text {i }}$	2.391 (3)
O13-Ca ${ }^{\text {ix }}$	2.434 (2)
P2-O22	1.513 (3)
$\mathrm{P} 2-\mathrm{O} 23{ }^{\text {iv }}$	1.528 (2)
$\mathrm{P} 2-\mathrm{O} 23$	1.528 (2)
$\mathrm{P} 2-\mathrm{O} 21$	1.561 (3)
$\mathrm{O} 21-\mathrm{Fe}{ }^{\text {xiv }}$	2.1135 (18)
$\mathrm{O} 22-\mathrm{Fe} 3^{\mathrm{xi}}$	1.894 (3)
$\mathrm{O} 23-\mathrm{Fe} 2^{\text {ii }}$	1.981 (2)
P3-O32	1.515 (3)
P3-O31	1.530 (3)
P3-O33 ${ }^{\text {xv }}$	1.544 (2)
P3-O33 ${ }^{\text {xvi }}$	1.544 (2)
$\mathrm{P} 3-\mathrm{Ca}^{\text {vii }}$	3.1724 (16)
$\mathrm{O} 32-\mathrm{Fe} 2^{\text {ii }}$	1.945 (3)
O33-P3 ${ }^{\text {xvi }}$	1.544 (2)
$\mathrm{O} 33-\mathrm{Ca}^{\text {xiii }}$	2.514 (2)
$\mathrm{O}-\mathrm{Fe}{ }^{\text {xvii }}$	1.9860 (17)
$\mathrm{O}-\mathrm{Fe} 1^{\mathrm{ix}}$	1.9860 (17)
$\mathrm{O}-\mathrm{Fe} 2-\mathrm{P} 1$	125.58 (10)
$\mathrm{O} 32{ }^{\text {ix }}-\mathrm{Fe} 2-\mathrm{P} 1$	118.50 (10)
$\mathrm{O} 23{ }^{\text {ix }}$ - $\mathrm{Fe} 2-\mathrm{P} 1$	85.83 (5)
$\mathrm{O} 23{ }^{\mathrm{x}}$-Fe2-P1	85.83 (5)
$\mathrm{O} 31-\mathrm{Fe} 3-\mathrm{O} 22^{\text {xi }}$	108.28 (14)
O31-Fe3-O12	104.83 (13)

$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Ca}-\mathrm{O} 23{ }^{\text {iv }}$
$\mathrm{O} 13^{\text {iii }}-\mathrm{Ca}-\mathrm{O} 23^{\text {iv }}$
$\mathrm{O} 13^{\text {iii }}-\mathrm{Ca}-\mathrm{O} 23^{\text {iv }}$
$\mathrm{O} 23-\mathrm{Ca}-\mathrm{O} 23{ }^{\text {iv }}$
$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Ca}-\mathrm{O} 33^{\text {v }}$
$\mathrm{O} 13^{\text {ii }}-\mathrm{Ca}-\mathrm{O} 33^{\mathrm{v}}$
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Ca}-\mathrm{O} 33^{\text {v }}$
$\mathrm{O} 23-\mathrm{Ca}-\mathrm{O} 33^{\text {v }}$
$\mathrm{O} 23{ }^{\text {iv }}-\mathrm{Ca}-\mathrm{O} 33^{\mathrm{v}}$
$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Ca}-\mathrm{O} 33^{\text {vi }}$
$\mathrm{O} 13^{\text {iii }}-\mathrm{Ca}-\mathrm{O} 33^{\text {vi }}$
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Ca}-\mathrm{O}$
$\mathrm{O} 23-\mathrm{Ca}-\mathrm{O} 33^{\text {vi }}$
$\mathrm{O} 23{ }^{\text {iv }}-\mathrm{Ca}-\mathrm{O} 33$
$\mathrm{O} 33^{\mathrm{v}}-\mathrm{Ca}-\mathrm{O} 33^{\text {vi }}$
$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Ca}-\mathrm{P} 2$
$\mathrm{O} 13{ }^{\text {ii }}-\mathrm{Ca}-\mathrm{P} 2$
$\mathrm{O} 13{ }^{\text {iiii }} \mathrm{Ca}-\mathrm{P} 2$
$\mathrm{O} 33^{\mathrm{v}}-\mathrm{Ca}-\mathrm{P} 2$
$\mathrm{O} 33^{\text {vi }}-\mathrm{Ca}-\mathrm{P} 2$
$\mathrm{O} 11{ }^{\text {i }}-\mathrm{Ca}-\mathrm{P} 3^{\text {vii }}$
$\mathrm{O} 13^{\text {ii }}-\mathrm{Ca}-\mathrm{P} 3^{\text {vii }}$
$\mathrm{O} 13^{\text {iii }}-\mathrm{Ca}-\mathrm{P} 3^{\text {vii }}$
$\mathrm{O} 23-\mathrm{Ca}-\mathrm{P} 3^{\text {vii }}$
$\mathrm{O} 23{ }^{\text {iv }}-\mathrm{Ca}-\mathrm{P} 3^{\text {vii }}$
$\mathrm{P} 2-\mathrm{Ca}-\mathrm{P} 3^{\text {vii }}$
$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Ca}-\mathrm{P} 1^{\text {ii }}$
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Ca}-\mathrm{P} 1^{\text {ii }}$
$\mathrm{O} 13^{\text {iii }}-\mathrm{Ca}-\mathrm{P} 1^{\text {ii }}$
O23-Ca-P1 ${ }^{\text {ii }}$
$\mathrm{O} 23^{\text {iv }}-\mathrm{Ca}-\mathrm{P} 1^{\mathrm{ii}}$
$\mathrm{O} 33^{\mathrm{V}}-\mathrm{Ca}-\mathrm{P} 1^{\text {ii }}$
$\mathrm{O} 33^{\text {vi }}-\mathrm{Ca}-\mathrm{P} 1^{\text {ii }}$
$\mathrm{P} 2-\mathrm{Ca}-\mathrm{P} 1^{\text {ii }}$
$\mathrm{P} 3{ }^{\mathrm{Vii}}-\mathrm{Ca}-\mathrm{P} 1^{\text {ii }}$
$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Ca}-\mathrm{P} 1^{\mathrm{V}}$
$\mathrm{O} 13{ }^{\text {iii }}-\mathrm{Ca}-\mathrm{P} 1^{\mathrm{v}}$
$\mathrm{O} 23-\mathrm{Ca}-\mathrm{P} 1^{\text {v }}$
$\mathrm{O} 23{ }^{\text {iv }}-\mathrm{Ca}-\mathrm{P} 1^{\text {v }}$
$\mathrm{O} 33{ }^{\mathrm{v}}-\mathrm{Ca}-\mathrm{P} 1^{\mathrm{v}}$
$\mathrm{O} 33^{\mathrm{vi}}-\mathrm{Ca}-\mathrm{P} 1^{\mathrm{v}}$

$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Ca}-\mathrm{O} 23^{\mathrm{iv}}$
$\mathrm{O} 13^{\mathrm{ii}}-\mathrm{Ca}-\mathrm{O} 23^{\text {iv }}$
$\mathrm{O} 13^{\text {iii }}-\mathrm{Ca}-\mathrm{O} 23^{\text {iv }}$
$\mathrm{O} 23-\mathrm{Ca}-\mathrm{O} 23^{\text {iv }}$
$\mathrm{O} 11^{1}-\mathrm{Ca}-\mathrm{O} 33^{\mathrm{V}}$
O13 ${ }^{\text {ii }}-\mathrm{Ca}-\mathrm{O} 33^{\text {V }}$
$\mathrm{O} 13^{\mathrm{iii}}-\mathrm{Ca}-\mathrm{O} 33^{\mathrm{V}}$
$\mathrm{O} 23-\mathrm{Ca}-\mathrm{O} 33^{\vee}$
$11^{\mathrm{i}}-\mathrm{Ca}-033^{\mathrm{vi}}$
$\mathrm{O} 13^{\text {ii }}-\mathrm{Ca}-\mathrm{O} 33^{\text {vi }}$
$\mathrm{O} 13^{\mathrm{iii}}-\mathrm{Ca}-\mathrm{O} 33^{\mathrm{vi}}$
$\mathrm{O} 23-\mathrm{Ca}-\mathrm{O} 33^{\text {vi }}$
$\mathrm{O} 23^{\mathrm{iv}}-\mathrm{Ca}-\mathrm{O} 33^{\mathrm{vi}}$

- $\mathrm{Ca}-\mathrm{O}_{3}{ }^{\text {vi }}$
$\mathrm{O} 11^{1}-\mathrm{Ca}-\mathrm{P} 2$
O13 ${ }^{\text {ii }-\mathrm{Ca}-\mathrm{P} 2 ~}$
$\mathrm{O} 13^{\text {iii }}-\mathrm{Ca}-\mathrm{P} 2$
O33-Ca-P2
$\mathrm{O} 11^{\mathrm{i}}-\mathrm{Ca}-\mathrm{P} 3^{\text {vii }}$
$\mathrm{O} 13^{\mathrm{ii}}-\mathrm{Ca}-\mathrm{P} 3^{\text {vii }}$
$\mathrm{O} 13^{\mathrm{iii}}-\mathrm{Ca}-\mathrm{P} 3^{\text {vii }}$
O2-Ca-P3 ${ }^{\text {vi }}$
$\mathrm{O} 23^{\text {iv }}-\mathrm{Ca}-\mathrm{P} 3^{\mathrm{vii}}$
Ca-P3 ${ }^{\text {vii }}$
$011^{i}-\mathrm{Ca}-\mathrm{P} 1^{\mathrm{ii}}$
$\mathrm{Ol}^{\text {iin- }} \mathrm{Ca}-\mathrm{Pl}^{\text {ii }}$
$\mathrm{O} 13^{\mathrm{iii}}-\mathrm{Ca}-\mathrm{P} 1^{\mathrm{ii}}$
O23-Ca-P1 ${ }^{11}$
$\mathrm{O} 23^{\mathrm{iv}}-\mathrm{Ca}-\mathrm{P} 1^{\mathrm{ii}}$
$\mathrm{O}^{\circ}-\mathrm{Ca}-\mathrm{P} 1^{11}$
$\mathrm{O} 33^{\mathrm{vi}}-\mathrm{Ca}-\mathrm{P} 1^{\mathrm{ii}}$
$\mathrm{P} 2-\mathrm{Ca}-\mathrm{P} 1^{\mathrm{ii}}$
O11 ${ }^{\text {in }} \mathrm{Ca}-\mathrm{P} 1^{\mathrm{y}}$
$\mathrm{O} 33^{\mathrm{vi}}-\mathrm{Ca}-\mathrm{P} 1^{\text {v }}$
78.17 (9)
144.58 (7)
93.59 (8)
57.88 (11)
149.65 (5)
133.04 (8)
86.46 (7)
105.74 (8)
78.93 (9)
149.65 (5)
86.46 (7)
133.04 (8)
78.93 (9)
105.74 (8)
57.20 (9)
79.81 (9)
121.53 (5)
121.53 (5)
89.64 (8)
89.64 (8)
168.11 (7)
111.42 (6)
111.42 (6)
91.45 (7)
91.45 (7)
88.29 (7)
77.77 (2)
25.99 (5)
126.71 (6)
68.54 (6)
124.46 (6)
132.14 (5)
75.48 (5)
97.38 (2)
104.01 (2)
77.77 (2)
126.71 (6)
124.46 (6)
68.54 (6)
75.48 (5)
132.14 (5)

$\mathrm{O} 22^{\mathrm{xi}}-\mathrm{Fe} 3-\mathrm{O} 12$	146.89 (12)
O31-Fe3-O33	95.26 (6)
$\mathrm{O} 22^{\mathrm{xi}}-\mathrm{Fe} 3-\mathrm{O} 33$	95.17 (6)
O12-Fe3-O33	81.70 (6)
O31-Fe3-O33 ${ }^{\text {xii }}$	95.26 (6)
$\mathrm{O} 22^{\text {xi }}-\mathrm{Fe} 3-\mathrm{O} 33^{\text {xii }}$	95.17 (6)
$\mathrm{O} 12-\mathrm{Fe} 3-\mathrm{O} 33^{\text {xii }}$	81.70 (6)
O33-Fe3-O33 ${ }^{\text {xii }}$	162.15 (12)
O13-P1-O13 ${ }^{\text {xii }}$	112.33 (16)
O13-P1-O11	113.29 (9)
$\mathrm{O} 13{ }^{\text {xii }}$-P1-O11	113.29 (9)
O13-P1-O12	108.34 (9)
$\mathrm{O} 13{ }^{\text {xii }} \mathrm{P} 1-\mathrm{O} 12$	108.34 (9)
O11-P1-O12	100.34 (15)
O13-P1-Fe2	123.62 (8)
$\mathrm{O} 13{ }^{\text {xii }} \mathrm{P} 1-\mathrm{Fe} 2$	123.62 (8)
O11-P1-Fe2	50.73 (11)
O12-P1-Fe2	49.61 (11)
O13-P1-Ca ${ }^{\text {ix }}$	44.13 (8)
O13 ${ }^{\text {xii }}$-P1-Ca ${ }^{\text {ix }}$	151.82 (9)
O11-P1-Ca ${ }^{\text {ix }}$	93.19 (4)
O12-P1-Ca ${ }^{\text {ix }}$	74.294 (19)
Fe2-P1-Ca ${ }^{\text {ix }}$	80.22 (2)
O13-P1-Ca ${ }^{\text {xiii }}$	151.82 (9)
$\mathrm{O} 13{ }^{\mathrm{xii}}-\mathrm{P} 1-\mathrm{Ca}^{\text {xiii }}$	44.13 (8)
O11-P1-Ca ${ }^{\text {xiii }}$	93.19 (4)
O12-P1-Ca ${ }^{\text {xiii }}$	74.294 (19)
$\mathrm{Fe} 2-\mathrm{P} 1-\mathrm{Ca}^{\text {xiii }}$	80.22 (2)
$\mathrm{Ca}^{\text {ix }}-\mathrm{P} 1-\mathrm{Ca}^{\text {xiii }}$	148.58 (4)
P1-O11-Fe2	96.36 (14)
P1-O11-Ca ${ }^{\text {i }}$	140.38 (15)
$\mathrm{Fe} 2-\mathrm{O} 11-\mathrm{Ca}^{\text {i }}$	123.26 (13)
P1-O12-Fe3	134.77 (17)
P1-O12-Fe2	97.02 (14)
$\mathrm{Fe} 3-\mathrm{O} 12-\mathrm{Fe} 2$	128.22 (14)
P1-O13-Fe1	131.13 (12)
$\mathrm{P} 1-\mathrm{O} 13-\mathrm{Ca}^{\text {ix }}$	109.88 (10)
Fel-O13-Ca ${ }^{\text {ix }}$	118.97 (9)
$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 23{ }^{\text {iv }}$	113.70 (10)
$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 23$	113.70 (10)
$\mathrm{O} 23{ }^{\text {iv }}-\mathrm{P} 2-\mathrm{O} 23$	103.06 (16)

$\mathrm{P} 2-\mathrm{Ca}-\mathrm{P} 1^{v}$	97.38 (2)	O22-P2-O21	107.95 (17)
$\mathrm{P} 3^{\mathrm{vii}}-\mathrm{Ca}-\mathrm{P} 1^{\mathrm{v}}$	104.01 (2)	$\mathrm{O} 23{ }^{\text {iv }}-\mathrm{P} 2-\mathrm{O} 21$	109.13 (10)
$\mathrm{P} 1^{\mathrm{ii}}-\mathrm{Ca}-\mathrm{P} 1^{\mathrm{v}}$	148.58 (4)	$\mathrm{O} 23-\mathrm{P} 2-\mathrm{O} 21$	109.13 (10)
$\mathrm{O}^{\text {viii }}-\mathrm{Fe} 1-\mathrm{O}^{\text {ii }}$	180.0	O22-P2-Ca	122.57 (13)
$\mathrm{O}^{\text {viii }}$ - $\mathrm{Fe} 1-\mathrm{O} 13$	90.27 (10)	$\mathrm{O} 23{ }^{\text {iv }}-\mathrm{P} 2-\mathrm{Ca}$	51.94 (8)
$\mathrm{O}^{\text {ii }}-\mathrm{Fe} 1-\mathrm{O} 13$	89.73 (10)	$\mathrm{O} 23-\mathrm{P} 2-\mathrm{Ca}$	51.94 (8)
$\mathrm{O}^{\text {viii] }} \mathrm{Fe} 1-\mathrm{O} 13^{\text {i }}$	89.73 (10)	O21-P2-Ca	129.47 (12)
$\mathrm{O}^{\mathrm{ii}}-\mathrm{Fe} 1-\mathrm{O} 13^{\text {i }}$	90.27 (10)	$\mathrm{P} 2-\mathrm{O} 21-\mathrm{Fe} 1$	124.75 (8)
$\mathrm{O} 13-\mathrm{Fe}-\mathrm{O} 13{ }^{\text {i }}$	180.0	$\mathrm{P} 2-\mathrm{O} 21-\mathrm{Fe} 1^{\text {xiv }}$	124.75 (8)
$\mathrm{O}^{\text {viii }}-\mathrm{Fe} 1-\mathrm{O} 21^{\text {i }}$	103.14 (9)	Fe1-O21-Fe1 ${ }^{\text {xiv }}$	96.97 (11)
$\mathrm{O}^{\mathrm{ii}}-\mathrm{Fe} 1-\mathrm{O} 21^{\mathrm{i}}$	76.86 (9)	$\mathrm{P} 2-\mathrm{O} 22-\mathrm{Fe} 3{ }^{\text {xi }}$	165.2 (2)
$\mathrm{O} 13-\mathrm{Fe} 1-\mathrm{O} 21^{\text {i }}$	90.79 (9)	$\mathrm{P} 2-\mathrm{O} 23-\mathrm{Fe} 2^{\mathrm{ii}}$	136.88 (12)
$\mathrm{O} 13^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 21^{\mathrm{i}}$	89.21 (9)	$\mathrm{P} 2-\mathrm{O} 23-\mathrm{Ca}$	98.94 (11)
$\mathrm{O}^{\text {viii }}-\mathrm{Fe} 1-\mathrm{O} 21$	76.86 (9)	$\mathrm{Fe}_{2}{ }^{\mathrm{ii}}-\mathrm{O} 23-\mathrm{Ca}$	124.12 (9)
$\mathrm{O}^{\text {ii }}-\mathrm{Fe} 1-\mathrm{O} 21$	103.14 (9)	O32-P3-O31	109.09 (17)
$\mathrm{O} 13-\mathrm{Fe} 1-\mathrm{O} 21$	89.21 (9)	O32-P3-O33 ${ }^{\text {xv }}$	111.49 (11)
$\mathrm{O} 13{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 21$	90.79 (9)	O31-P3-O33 ${ }^{\text {xv }}$	111.12 (11)
$\mathrm{O} 21{ }^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 21$	180.0	O32-P3-O33 ${ }^{\text {xvi }}$	111.49 (11)
$\mathrm{O}-\mathrm{Fe} 2-\mathrm{O} 32{ }^{\text {ix }}$	115.92 (13)	O31-P3-O33 ${ }^{\text {xvi }}$	111.12 (11)
$\mathrm{O}-\mathrm{Fe} 2-\mathrm{O} 23{ }^{\text {ix }}$	96.52 (5)	$\mathrm{O} 33^{\mathrm{xv}}-\mathrm{P} 3-\mathrm{O} 33^{\mathrm{xvi}}$	102.43 (16)
$\mathrm{O} 32{ }^{\text {ix }}-\mathrm{Fe} 2-\mathrm{O} 23{ }^{\text {ix }}$	87.58 (6)	$\mathrm{O} 32-\mathrm{P} 3-\mathrm{Ca}^{\text {vii }}$	122.83 (13)
$\mathrm{O}-\mathrm{Fe} 2-\mathrm{O} 23{ }^{\mathrm{x}}$	96.52 (5)	O31-P3-Ca ${ }^{\text {vii }}$	128.08 (12)
$\mathrm{O} 32{ }^{\text {ix }}-\mathrm{Fe} 2-\mathrm{O} 23^{\mathrm{x}}$	87.58 (6)	$\mathrm{O} 33^{\mathrm{xv}}-\mathrm{P} 3-\mathrm{Ca}^{\text {vii }}$	51.28 (8)
$\mathrm{O} 23^{\mathrm{ix}}-\mathrm{Fe} 2-\mathrm{O} 23^{\mathrm{x}}$	166.93 (11)	$\mathrm{O} 33^{\mathrm{xvi}}-\mathrm{P} 3-\mathrm{Ca}^{\text {vii }}$	51.28 (8)
$\mathrm{O}-\mathrm{Fe} 2-\mathrm{O} 12$	158.95 (11)	P3-O31-Fe3	139.66 (19)
$\mathrm{O} 32{ }^{\text {ix }}-\mathrm{Fe} 2-\mathrm{O} 12$	85.13 (12)	P3-O32-Fe2 ${ }^{\text {ii }}$	139.08 (19)
$\mathrm{O} 23{ }^{\text {ix }}-\mathrm{Fe} 2-\mathrm{O} 12$	83.75 (5)	$\mathrm{P} 3{ }^{\text {xvi }}-\mathrm{O} 33-\mathrm{Fe} 3$	134.20 (12)
$\mathrm{O} 23{ }^{\mathrm{x}}-\mathrm{Fe} 2-\mathrm{O} 12$	83.75 (5)	$\mathrm{P} 3^{\mathrm{xvi}}-\mathrm{O} 33-\mathrm{Ca}^{\text {xiii }}$	100.10 (10)
$\mathrm{O}-\mathrm{Fe} 2-\mathrm{O} 11$	92.67 (12)	Fe3-O33-Ca ${ }^{\text {xiii }}$	125.55 (9)
$\mathrm{O} 32{ }^{\text {ix }}-\mathrm{Fe} 2-\mathrm{O} 11$	151.41 (11)	$\mathrm{Fe} 2-\mathrm{O}-\mathrm{Fe} 1^{\mathrm{xvii}}$	125.79 (7)
$\mathrm{O} 23{ }^{\text {ix }}-\mathrm{Fe} 2-\mathrm{O} 11$	89.23 (6)	$\mathrm{Fe} 2-\mathrm{O}-\mathrm{Fe} 1^{\text {ix }}$	125.79 (7)
$\mathrm{O} 23{ }^{\mathrm{x}}-\mathrm{Fe} 2-\mathrm{O} 11$	89.23 (6)	$\mathrm{Fe} 1^{\mathrm{xvii}}-\mathrm{O}-\mathrm{Fe} 1^{\text {ix }}$	105.66 (12)
O12-Fe2-O11	66.28 (11)		

Symmetry codes: (i) $-x,-y-1,-z$; (ii) $x+1, y, z$; (iii) $x+1,-y-1 / 2, z$; (iv) $x,-y-1 / 2, z$; (v) $x+1, y+1, z$; (vi) $x+1,-y-3 / 2, z$; (vii) $-x+1$, $-y-1,-z+1$; (viii) $-x-1,-y-1,-z$; (ix) $x-1, y, z$; (x) $x-1,-y-3 / 2, z$; (xi) $-x,-y-1,-z+1$; (xii) $x,-y-3 / 2, z$; (xiii) $x-1, y-1, z$; (xiv) $-x$, $y+1 / 2,-z$; (xv) $-x, y+1 / 2,-z+1$; (xvi) $-x,-y-2,-z+1$; (xvii) $-x-1, y-1 / 2,-z$.

Fig. 1

Fig. 2

supplementary materials

Fig. 3

